Mineral dusts directly induce epithelial and interstitial fibrogenic mediators and matrix components in the airway wall.

نویسندگان

  • J Dai
  • B Gilks
  • K Price
  • A Churg
چکیده

Exposure to mineral dusts is associated with the development of chronic airflow obstruction, probably mediated in part by dust-induced fibrosis of the small airways. To investigate the mechanism of fibrosis, we exposed rat tracheal explants to amosite asbestos, iron oxide, or titanium dioxide. Explants were then maintained in air organ culture, and the expression of genes encoding for various mediators and matrix components assessed by reverse transcriptase-polymerase chain reaction (RT-PCR). At 7 d, all dusts produced significant increases in platelet-derived growth factor-A (PDGF-A) and transforming growth factor-beta1 (TGF-beta1) gene expression compared with control; asbestos and titanium dioxide produced increases in PDGF-B, and titanium dioxide increased TGF-alpha expression. Only asbestos caused increases in procollagen expression. No dust increased expression of tumor necrosis factor-alpha (TNF-alpha), fibronectin, or tropoelastin. Elevations in these factors coincided temporally with transport of particles into the epithelium and then to the subepithelial space. By in situ hybridization, TGF-beta gene expression was found in both the epithelium and subepithelial (interstitial) space, and PDGF-B and procollagen gene expression in the subepithelial space. Chemical analysis showed a small increase in hydroxyproline, a measure of collagen content, in asbestos-treated explants. We conclude that mineral dusts can induce airway wall fibrosis by directly upregulating proliferative and fibrogenic mediators as well as matrix components in the airway epithelium and interstitium, and that neither airspace nor circulating inflammatory cells are required for these effects. Different mineral dusts produce different patterns of reaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Airway wall remodeling induced by occupational mineral dusts and air pollutant particles.

OBJECTIVES COPD has been reported in workers exposed to particulates, and there is increasing evidence that high levels of ambient particulate pollutants may also be associated with COPD. The studies here investigate the hypothesis that particulates, including air pollution particles, can induce airway wall fibrosis, a process that can lead to COPD. DESIGN Rat tracheal explants were exposed t...

متن کامل

Induction of fibrogenic mediators by fine and ultrafine titanium dioxide in rat tracheal explants.

Respirable ambient particles [particulate matter <10 μm (PM10)] are associated with both acute and chronic adverse health effects including chronic airflow obstruction. PM10 can induce expression of inflammatory and fibrogenic mediators, but there is controversy about the types and/or sizes of particles involved and, in particular, whether ultrafine particles are the major toxic agents. To exam...

متن کامل

Adsorption of lipoproteins onto mineral dust surfaces: a possible factor in the pathogenesis of particle-induced pulmonary fibrosis?

We compare the adsorption behavior of high density lipoproteins (HDL) and low density lipoproteins (LDL) on "fibrogenic" and "nonfibrogenic" mineral dusts. The adsorption tests with bovine lipoprotein concentrate and human serum produced the following results: 1) All seven examined fibrogenic dusts (SiO2 DQ12, SiO2 F600, silica, graphite, TiC, kaolin, talc) adsorbed significantly more high dens...

متن کامل

TACE/TGF-α/EGFR regulates CXCL8 in bronchial epithelial cells exposed to particulate matter components.

Airborne particulate matter (PM) may induce or exacerbate neutrophilic airway disease by triggering the release of inflammatory mediators, such as CXC chemokine ligand (CXCL)8, from the airway epithelium. It is still unclear which PM components are driving CXCL8 responses, as most candidates occur at low concentrations in the dusts. We therefore hypothesised that different PM constituents may c...

متن کامل

Bronchial epithelial cell matrix production in response to silica and basic fibroblast growth factor.

BACKGROUND Previous studies show that macrophages, lung fibroblasts, and their soluble mediators are responsible for the onset and development of pulmonary fibrosis. This study was conducted to determine whether airway epithelial cells are also directly involved in response to fibrogenic agents and consequently in the pathogenesis of lung fibrosis. To verify the hypothesis, we determined whethe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of respiratory and critical care medicine

دوره 158 6  شماره 

صفحات  -

تاریخ انتشار 1998